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The universe

Universe content
> Visible matter (5%): Anything we can el e

see, emits electromagnetic (EM)

‘dark matter 27% |

radiation. j— e

> Dark matter (27%): No EM
interaction, may interact with weak -
gravitational force.

> Dark energy (68%): Repulsive force,
against the gravity, causes the

universe to expand at an
accelerating rate.
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Cosmic microwave background (CMB)

> Discovered in 1964 by Arno Penzias and Robert Wils

> Electromagnetic radiation

FI1GURE 1.1: The detailed full-sky picture of the infant Universe created from nine years

> ReSid ue from a n ea rly Stage Of the u n ive rse of WMAP data [20]. This shows that 13.7 billion year old temperature fluctuations

within £0.2mK and different color refers the density inhomogeneities.

The discovery of CMB guide us
to accept the Big Bang theory
and production of dark matter.
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Galaxy rotation curve
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> Rotation curve should decrease
Inverse square root with distance

> Observational curves of visible parts
of the galaxy do not decreases

> Large gap between observation and

expected curve leads towards the
gravitational effect of dark matter
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http://www.youtube.com/watch?v=uBguRWVqxgY

Gravitational lensing

> Gravity effect of dark matter

> Massive celestial body (eg. galaxy cluster) causes a sufficient
curvature of spacetime for the path of light around it to be
visibly bent, as if by a lens.

On the top is a Hubble Space Telescope image of the galaxy
cluster Cl 0024+17. On the bottom is the same image overlaid
with a map of the cluster’'s mass distribution.

The ring-like structure evident in the map is one of the strongest
pieces of evidence to date for the existence of dark matter.




Dark matter candidates
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> Massive enough for structure formation
Candidates are In different orders of 107 axion
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It is everywhere, do you feel it? 10°10°10710™10™10"*10*10” 10° 10° 10” 10° 10’ 10° 10’ 10” 10" 10™
Density of human being ~ 1000 kg/m3 mass (GeV)
Den5|ty Of da rk matter NlOA'21 kg/m3 FIGURE 1.11: Estimated loci of select dark-matter models in the space of candidate

mass in GeV versus dark-matter-candidate-nucleon interaction cross section in pb [88].

If you add all dark matter inside all human being on

. earth, it is less than single nanogram. Carleton
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Dark matter modulation

WIMP Wind
. [ _>
> The relative velocity between DM

particles in galactic halo and detectors
varies over the year.

> Approximately sinusoidal modulation
for the recoil rate of DM at keV
energies.

December

> Peaks at early June.

FIGURE 1.18: An Illustration of Earth’s relative velocity to WIMPs current which arise
annual modulation in dark matter signal [83]
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Direct detection experiments

Dark matter interact with the detector material,

energy transform
CRESST-III (CaWO,)

COSINE (Nal)
DAMA/LIBRA (Nal)
KIMS (Csl, Nal)
ANAIS (Nal) |  CUORE (TeO,)
DM-Ice (Nal) CRESST-I (ALLO
XMASS (Xe) (ALO)
/ :
- . : Outgoing
XENON100 (Xe) SuperCDMS (Ge) Particle
ZEPLIN-III (Xe) lonization EDELWEISS-Il (Ge) ‘
LUX (Xe) (charge) EURECA (Ge, CaWo,) Incoming
DarkSide (Ar) :
Particle
C-4 (Ge)
DRIFT (CS,)
DM-TPC (CF,)
GERDA (Ge)
. FiGure 1.19: Different dark matter direct detection experiments classified by their Cal'leton
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Discovery

> Record particle interaction signal

from the detector
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> Identify the background and dark ="

matter signal (simulate all possibl = |
background sources) e
. . Energy (keV)
> Plot the extracted signal vs time
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Challenges

> Background noises: Deep underground / outer space (not on the surface of the earth)
> Large cross section: Multi hundred tons of detector materials
> Technologies: DAQ, ns timing resolution, analysis toolkits, simulation, material purity

> Resources: Multi billion dollar financing, international collaboration
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COSINE-100 collaboration

Joint collaboration between KIMS and DM-Ice to search for dark matter interactions in Nal(Tl) scintillating crystals.
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COSINE station
YangYang Laboratory (Y2L)
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COSINE detector

> 8 Nal(Tl) crystals (100 kg) fully immersed in LAB based liquid scintillator.
> Liquid scintillator works as external gamma and neutron veto.
> Covered the detector with plastic scintillator nanels (muon veto).
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DEAP collaboration

~100 researcher in Canada, Germany, Italy, Mexico, Poland, Russia, Spain, UK, USA
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DEAP site

> The detector is located at SNOLAB in Sudbury
Ontario, world’s deepest clean lab.

> A deep underground laboratory which uses the 2.2
km of rock overburden (provides a ~6 k.m.w.e
overburden)
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Detector

* DEAP-3600 is the largest running liquid argon detector designed for the dark matter search
* 3279 = 96 kg of Liquid Argon

* Density: 1.4 g/cm3

¢ Scintillation light yield in DEAP:
7.1 photoelectrons (PE)/keVee

== =%/} ﬁ »\ : Astroparticle Physics 108 (2019) 1-23
N
NS


http://www.youtube.com/watch?v=Oy2NbzqD_nM

Results of DEAP

> World’s leading cross section
limit on Argon detector.

> Analysis is ongoing for 3 years
data-set.

> Some parts of the hardware is
upgrading and detector will be

. 2
WIMP-nucleon cross section [cm*|
WIMP-nucleon cross section [pb]

run for 2 more years after the

upgrade.

I 10 100 1000 10
WIMP Mass [GeV/c?]
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Future detectors

Many large scaled detectors are on
the pipeline for next generation.

Argo
300 tons of liquid argon.

Purposed location (under
discussion): SNOLAB, Sudbury,
Canada

Data starts: ~ 2040

Dark Matter-Nucleon G, [cm?]

Darkside-20k

20 tons of liquid argon

Location: LNGS, Italy
Data starts: ~ 2030

10°%
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1 0—39
1 0—40
1 0—41
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Conclusion

> Dark matter is still hiding with us despite of 50 years of effort
> Worldwide collaboration is ongoing for the dark matter detection
> Large scaled, advanced tech future generation’s detector are on the horizon

> Stay tuned: dark matter will no longer dark, it will be visible soon
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Direct astronomical observation

> When two galaxy cluster collide, stars were
not affected

> Hot plasma clustered in the center drove
into one another and emitted x-ray

> The mass of the cluster distributed on
either side

Explanation of dark matter: dark matter and

galaxies passed through each other and the hot . , e
plasma CI USte red WaS bIOCk by eIeCtromag netlc FIGURE 1.7: Galaxy ?luster 1E 0657—556,.3&30 known as t}.le Bullet cluster. Hpt p.lasma
Inter aCtIOnS and Inte rwe ave S N the C e nter detected as X-ray regions from Chandra is seen as two pink lumps. An optical image

from Magellan shows the galaxies and mass regions inferred from Hubble (blue).
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Search methods

DM particles can interact with standard model (SM) particles, annihilate or decay to SM

particles, and can be produced in accelerator.
Dark Matter Particle

)d )d

A
|

uoeIyliuuy
Production
(Accelerator)

(uonoalap 10841pul)

\V/ q SM particles q

— >

DM-SM Interaction
(Direct detection
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