

Enhanced ex-situ biomethanation of H_2 and CO_2 for biomethane production using graphene oxide coated carrier

Ajay Thapa

PhD student

Department of Civil and Environmental Engineering

Carleton University

Content

- ➤ Background
- ➢ Ex-situ biomethanation
- \succ Research gaps
- > Hypothesis
- ➢ Objective
- > Experimental setup
- > Experimental results
- ➤ Conclusion

Biogas- a mixture of mainly methane (CH_4) and carbon dioxide (CO_2) produced during anaerobic digestion of organic wastes.

Anaerobic digestion

Biogas plant

- CH₄ 40~60% H₂S, NH₃, H₂O... ↓ Low CH₄ content
 - Low calorific value
 - Limit use to heat and electricity

What is Biogas Upgrading?

Removal or conversion of CO_2 contained in raw biogas to increase the methane content (> 95%) of the final output gas

Why biogas upgrading?

- Higher CH₄ content
- Decrease CO₂ emission
- Inject into natural gas grid
 - Utilize as transport fuel

Physicochemical biogas upgrading technologies

Khan, I. U., Othman, M. H. D., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-Dasht Arzhandi, M., & Azelee, I. W. (2017). Energy Conversion and Management, 150, 277-294.

	Cryogenic	Sabatier Process	PSA	Water Scrubbing	Physical Scrubbing	Chemical Absorption	Membrane Separation
Consumption for raw biogas (kWh/Nm ³)	0.76	nf	0.23-0.30	0.25-0.3	0.2-0.3	0.05-0.15	0.18-0.20
Consumption for clean biogas (kWh/Nm ³)	nf	nf	0.29-1.00	0.3-0.9	0.4	0.05-0.25	0.14-0.26
Heat consumption (kWh/Nm3)	nf	nf	None	None	<0.2	0.5-0.75	None
Heat demand (°C)	-196	270			55-80	100-180	
Cost	High	Medium	Medium	Medium	Medium	High	High
CH4 losses (%)	2	nf	<4	<2	2-4	<0.1	<0.6
CH4 recovery (%)	97-98	97-99	96-98	96-98	96–98	96-99	96-98
Prepurification	Yes	Recommended	Yes	Recommended	Recommended	Yes	Recommended
H ₂ S co-removal	Yes	No	Possible	Yes	Possible	Contaminant	Possible
N2 and O2 co-removal	Yes	No	Possible	No	No	No	Partial
Operation pressure (bar)	80	8-10	3-10	4-10	4-8	Atmospheric	5-8
Pressure at outlet (bar)	8-10		4-5	7-10	1.3-7.5	4-5	46

Efficiency of main physicochemical biogas upgrading technologies

- Currently biogas upgrading technologies are expensive and energy intensive (pressure, chemicals or membrane)
- Upgrading for small and medium scale facilities is not economically feasible
- Losses of CO₂ and CH₄

- Fluctuating production of electricity from solar panels or wind turbines
- Excess electricity requires solutions
- Difficult to store electricity

- Excess electricity can be converted to biomethane by ex-situ biomethanation
- ◆ Easy to store and transport biomethane where access to natural gas grid

Ex-situ biomethanation

Developed by Gang Luo, Postdoc, and Irini Angelidaki, Professor

The Principle:

 CO_2 together with H_2 could be used by hydrogenotrophic methanogens for CH_4 production

 $4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$ $\Delta G^0 = -130.7 \text{ kJ/mol}$

- H_2 as electron donor and CO_2 as electron acceptor and carbon source
- H₂ could be obtained by water electrolysis using surplus renewable electricity (e.g., wind mill, solar panel)
- Power-to-Gas (PtG)

Ex-situ biomethanation

Why ex-situ biomethanation

- Operation at ambient conditions (atmospheric pressure and moderate temperature) without use of catalyst and chemicals
- ♦ Utilization of CO₂ instead of removal to increase CH₄ content in output gas
- Higher resistance to gas impurities like H_2S , organic acids, NH_4

Why biomethanation?

- Eco-friendly
- Cost-effective
- Low energy demanding
- Utilization of valuable CO2

Ex-situ biomethanation with Power-to-gas concept for biomethane production

• H₂ production using surplus renewable electricity (windmills or solar panels) through water electrolysis

[♦] Power-to-Gas (P2G)

Research gaps

- ♦ Low H₂ gas-liquid mass transfer
- Biofilm detachment under high gas loading rate (H_2/CO_2)
- Dilution of methanogens (from metabolic H₂O production during hydrogenotrophic methanogenesis)
- Stability of ex-situ biomethanation process under intermittent gas supply

Hypothesis

- Carrier material coated by conductive material (e.g., graphene oxide) can offer various benefits:
- Robust and dense biofilm formation (High microbial biomass)
- High specific surface area for microbes (biofilm)-gas-liquid phase interaction, which ultimately increase H₂ gas-liquid mass transfer and enhance biomethane production
- Prevent risk of dilution of methanogen from metabolic water production (No loss of microbes)
- Prevent loss of conductive materials

Objective

Main objective

• To enhance biomethane production using ex-situ biomethanation trickle bed reactor setup

Specific objective

 To investigate performance of graphene oxide coated carrier materials for H₂ gas-liquid mass transfer and biomethane production & apply in trickle bed reactor setup

Experimental setup

Preparation of coated carrier materials for biomethane production

- ♦ Graphene oxide (GO) was prepared by Hummer's method with some modifications.
- **&** GO coated carrier was prepared from the solution deposition method.

Hel-X carriers

GO-coated Hel-X carriers

Fig. Photos of conventional Hel-X carriers and graphene oxide (GO)-coated Hel-X carriers

Experimental setup

Experimental results

- CH₄ content reached >98% in GO coated reactor
- Dramatic reduction in CH_4 content in CR than GO under stressful condition (i.e., high H_2 loading rate)
- Complete conversion of H_2 for reducing CO_2 to CH_4

Figure. Biogas composition of **a**) Control reactor filled with Hel-X carrier and **b**) Reactor filled with graphene oxide (GO)-coated Hel-X carrier. The lines represent mean values (n=3) and error bars denote the standard deviation.

Experimental results

Phase Ι Π III IV CR GO CR GO GO CR Parameter CR GO H₂ loading rate 3.2 4.8 3.2 $(L/L_R.d)$ 3.2 CO₂ loading rate $(L/L_R.d)$ 0.8 1.2 1.2 1.2 Gas retention time (h) 24 24 24 18 **CH**₄ production rate $(L/L_{R}.d)$ 0.65 ± 0.07 0.56 ± 0.07 0.68 ± 0.11 0.69 ± 0.01 0.50 ± 0.02 0.46 ± 0.08 0.53 ± 0.03 0.69 ± 0.02 Biogas composition (%) H_2 0.00 ± 0.00 0.00 ± 0.00 10.98 ± 0.19 7.83 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 5.99 ± 0.28 1.31 ± 0.08 CO_2 26.67 ± 2.40 16.84 ± 1.58 5.08 ± 1.10 13.31 ± 5.51 9.27 ± 1.25 8.39 ± 1.49 2.69 ± 1.52 4.93 ± 2.81 **CH**₄ 86.69 ± 5.52 95.07 ± 2.84 62.35 ± 2.31 75.33 ± 1.77 90.73 ± 1.27 94.92 ± 1.12 85.62 ± 1.27 96.00 ± 1.60 nH2 (%) 100 ± 0.00 100 ± 0.00 $97.96 \pm 0.07 \quad 98.52 \pm 0.06$ 100 ± 0.00 100 ± 0.00 98.91 ± 0.04 99.71 ± 0.05

Table. Reactors performance at different phases under steady-state conditions

- **GO-coated reactor** performed better in terms of CH₄ production rate (38% \uparrow) & CH₄ content (13% \uparrow) than control reactor (CR)
- **GO-coated reactor** showed **resilience** even under 18 h gas retention time than CR
- GO facilitated Direct interspecies electron transfer (DIET) for high CH₄ content due to its high electrical conductivity and large specific surface area

Conclusion

- Performance of GO-coated Hel-X carriers were evaluated for ex-situ biomethanation
- GO-coated reactor performed better in terms of CH₄ production rate & CH₄ content than control reactor
- ♦ GO-coated carrier enhanced gas conversion efficiency and increased CH₄ production
- GO act as an electron mediator, accelerated DIET for enhanced bioconversion of CO_2 and H_2
- Coupling of H_2 and CO_2 in GO-coated reactor met natural gas quality CH_4 content (>95%)

THANK YOU MERCI