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Background

Biogas- a mixture of mainly
methane (CH,) and

carbon dioxide (CO,) produced
during anaerobic digestion

of organic wastes.




Background

Anaerobic digestion
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Background
Physicochemical biogas upgrading technologies
Biogas Purification
4
| ! ] |
. Membrane Cryogenic
e Adserption | separation separation
— T 1
Physical Chemical |— | Pressure swing o T s MMMs |
(PSA)
: Polymer
High = o
. - Co- ‘ Ceramic
water scrubbing — swing = polymer Cacamics B =
scrubbing (AS) adsorption s
WS ) ) Carbon Based
Cross- Based Matenial [
linked Material
Organic Inorganic Electrical Polymer
physical solvent | | swing ! . »
scrubbing scrubbing adsorption Blend Metallic Metallic | |
(OPA) ss) (ESA) polymer Silieg based
matenal material
Khan, I. U., Othman, M. H. D., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-Dasht Arzhandi, M., & Azelee, I. W. (2017). Energy Conversion and Management, 150, 277-294.




Background
Efficiency of main physicochemical biogas upgrading technologies
Sabatier Water Physical Chemical Membrane
Cryogenic  Process PSA  Scrubbing  Scrubbing  Absorption  Separation
= Currently biogas upgrading technologies  Consumption for raw biogas 076 nf 023030 02503 0203 005-0.15 0.18-020
are expensive and energy intensive (kWh/Nm’)
(pressure, chemicals or membrane)
Consumption for clean biogas  nf f 029-100  03-09 04 005025 014026
=  Upgrading for small and medium scale (/N
facilities is not economically feasible Heat consumpton (KWh/Naw') - nf nf None  None 0 05075 None
Heat demand (C) -1% m 5-80 100-180
= Losses of CO, and CH, Cost High ~ Medium Medium  Medium Medium High High
CH, losses (%) 2 nf <! Q 24 <01 <06
CHy recovery (%) 7% 99 %% %% 9%-98 9%-%9 9-98
Prepurification Yes Recommended  Yes Recommended  Recommended ~ Yes Recommended
HS co-removal Yes No Possible ~ Yes Possible Contaminant  Possible
N, and 0, co-removal Yes No Possible ~ No No No Partial
Operation pressure (bar) 80 §-10 MO 40 48 Atmospheric 58
Pressure at outlet (bar) §-10 5 7-10 1375 5 46




Background

> Fluctuating production of electricity from solar panels or wind turbines
 Excess electricity requires solutions

+ Difficult to store electricity

The solution

% Excess electricity can be converted to biomethane by ex-situ biomethanation

+ Easy to store and transport biomethane where access to natural gas grid




Ex-situ biomethanation

Developed by Gang Luo, Postdoc, and Irini Angelidaki, Professor

The Principle:
CO, together with H, could be used by hydrogenotrophic methanogens for CH, production

* H, as electron donor and CO, as electron acceptor and carbon source

* H, could be obtained by water electrolysis using surplus renewable electricity
(e.g., wind mill, solar panel)

« Power-to-Gas (PtG)
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Ex-situ biomethanation

Why ex-situ biomethanation
?

% Operation at ambient conditions (atmospheric pressure and moderate temperature) without use of catalyst and chemicals

« Utilization of CO, instead of removal to increase CH, content in output gas

«+ Higher resistance to gas impurities like H,S, organic acids, NH, ﬁ ?
~ ~
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Background

Ex-situ biomethanation with Power-to-gas concept for biomethane production
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% H, production using surplus renewable electricity (windmills or solar panels) through water electrolysis

% Power-to-Gas (P2G)




Research gaps

% Low H, gas-liquid mass transfer
+ Biofilm detachment under high gas loading rate (H,/CO,)
+ Dilution of methanogens (from metabolic H,O production during hydrogenotrophic

methanogenesis)

« Stability of ex-situ biomethanation process under intermittent gas supply




Hypothesis

& Carrier material coated by conductive material (e.g., graphene oxide) can offer various benefits:

+ Robust and dense biofilm formation (High microbial biomass)

+ High specific surface area for microbes (biofilm)-gas-liquid phase interaction, which ultimately
increase H, gas-liquid mass transfer and enhance biomethane production

« Prevent risk of dilution of methanogen from metabolic water production (No loss of microbes)

< Prevent loss of conductive materials
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Objective

Main objective

» To enhance biomethane production using ex-situ biomethanation trickle bed reactor setup

Specific objective

« To investigate performance of graphene oxide coated carrier materials for H, gas-liquid mass transfer

and biomethane production & apply in trickle bed reactor setup




Experimental setup

Preparation of coated carrier materials for biomethane production

% Graphene oxide (GO) was prepared by Hummer’s method with some modifications.

+ GO coated carrier was prepared from the solution deposition method.

Hel-X carriers GO-coated Hel-X carriers

Fig. Photos of conventional Hel-X carriers and graphene oxide (GO)-coated Hel-X carriers




Experimental setup

Analytical equipment
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Experimental results

a) Control reactor (CR) b) GO-coated reactor
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% CH, content reached >98% in GO coated reactor

¢+ Dramatic reduction in CH, content in CR than GO under stressful condition (i.e., high H, loading rate)

% Complete conversion of H, for reducing CO, to CH,

Figure. Biogas composition of a) Control reactor filled with Hel-X carrier and b) Reactor filled with graphene oxide (GO)-coated Hel-X carrier.
The lines represent mean values (n=3) and error bars denote the standard deviation.




Experimental results

Table. Reactors performance at different phases under steady-state conditions

Phase | 1 i v
Parameter CR GO CR GO CR GO CR GO
H, loading rate
(L/Lg.d) 3.2 4.8 3.2 3.2
CO, loading rate
(L/Lg.d) 0.8 1.2 1.2 1.2
Gas retention time (h) 24 24 24 18
CH, production rate
(L/Lg.d) 0.46 £0.08 0.65£0.07 0.56+£0.07 0.68+0.11 0.53+£0.03 0.69x001 0.50+0.02 0.69 £0.02
Biogas composition (%)
H, 0.00 £ 0.00 0.00£0.00 10.98+0.19 7.83+£0.19 0.00£0.00 0.00+£0.00 5.99+0.28 1.31+0.08
Co, 1331+551 493+£281 26.67+£240 1684+158 927x125 508+110 839+1.49 2.69+1.52
CH, 86.69+552 95.07+284 6235+231 7533+1.77 90.73+1.27 94.92+1.12 85.62+1.27 96.00 + 1.60
nH2 (%) 100 £ 0.00 100£0.00 97.96+0.07 98.52+0.06 100z0.00 100+ 0.00 98.91 +0.04 99.71 £ 0.05

% GO-coated reactor performed better in terms of CH, production rate (38% 1) & CH, content (13% 1) than control reactor (CR)
< GO-coated reactor showed resilience even under 18 h gas retention time than CR

% GO facilitated Direct interspecies electron transfer (DIET) for high CH, content due to its high electrical conductivity and
large specific surface area




Conclusion
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Performance of GO-coated Hel-X carriers were evaluated for ex-situ biomethanation
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GO-coated reactor performed better in terms of CH, production rate & CH, content than control
reactor

% GO-coated carrier enhanced gas conversion efficiency and increased CH, production
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GO act as an electron mediator, accelerated DIET for enhanced bioconversion of CO, and H,
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Coupling of H, and CO, in GO-coated reactor met natural gas quality CH, content (>95%)
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